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Steel wire rope (SWR) is of great importance to its many industrial applications. When SWR is damaged,
it is likely to result in serious consequences. Therefore, it is important to do research in the field of SWR
damage detection. Computer vision-based surface damage detection methods for SWR can operate with
high detection accuracy and good adaptation for different types of SWR. Conventional machine learning
methods with manual feature extraction have strong subjectivity. If the discriminant information cannot
be extracted accurately, the detection accuracy decreases. To address this problem, this paper proposes
an intelligent SWR damage detection method, based on a convolutional neural network, which has pow-
erful learning ability and can automatically extract discriminant features by training surface images of
the SWR. The experiment results show that the proposed method, based on deep learning, has a higher
F1 score and a higher detection speed than four other conventional machine learning methods.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Industrial development has led to the wide use of steel wire
rope (SWR) such as transportation, mine hoisting, and tourist rope-
ways. During the period of using SWR, various damage inevitably
occurs, due to the deterioration of its physical properties over time.
Therefore, in the practice of engineering, accurate monitoring of
the condition of the SWR is essential. At present, the common
manual inspection method presents problems of low efficiency
and time consumption, as well as inadequate and failed detection.
Therefore, automatic non-destructive testing for the SWR is an
urgent research subject [1].

Non-destructive SWR testing methods can be classified as fol-
low: the magnetic detection-based method [2], the acoustic emis-
sion detection-based method [3], the computer vision detection-
based method [6], etc. Magnetic detection mainly uses magnetic
flux leakage to judge local damage, such as a pitting fracture of
SWR. Acoustic emission detection mainly detects fractures and
elastic deformation of SWR that is caused by structural change.
Computer vision inspection uses a camera to capture an optical
image of the SWR surface and to detect the damage based on the
features of fracture. At present, the most mature and widely used
method is magnetic detection. Cao et al. [4] proposed a radial basis
function method to identify the electromagnetic excitation signal,
and thus achieved its purpose of detecting a SWR fracture. Yan
et al. [5] proposed a method for non-destructive testing of SWR,
using iron core as a coil winding skeleton. By increasing the num-
ber of iron cores, the signal-to-noise ratio of the coil output signal
is improved, so that it is easier to analyze damage. Although mag-
netic detection has some advantages, it is hard to operate, because
the equipment structure is complex and results are easily affected
by the liftoff value. In addition, for SWRs of different diameters, the
same apparatus of the magnetic detection apparatus may not be
applicable for magnetic flux leakage detection. Besides, it is diffi-
cult to apply the magnetic detection method to SWRs of small
diameter (3–6 mm), such as steel cables in aircraft handling sys-
tems, because of the special structure and position of SWR [6].
The apparatus used for computer vision detection has a simple
structure, and the same apparatus can be applied to SWRs of differ-
ent sizes; further, the detection result is basically unaffected by the
liftoff value. Therefore, computer vision detection has become a
potential research direction in the field of non-destructive SWR
testing.

Since the end of the 20th century, computer vision detection
has been used for non-destructive testing of SWR. Vallan and Moli-
nari [7] proposed a method to process SWR contours that relies on
computer vision detection, and this method is applied to cableway
inspection. Platzer et al. [8] analyzed and compared several feature
extraction methods for SWR anomaly detection, aiming to find the
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optimal features to obtain better detection performance. Rodner
et al. [9] proposed a classification method based on the Gaussian
process for one-class classification, which can distinguish between
images of defective and normal SWR. The detection result is better
than the one-class classification detection method based on sup-
port vector data description. Platzer et al. [10] proposed a new
strategy, using the hidden Markov model to locate SWR defects,
and this method is better than the time-invariant one-class classi-
fication method. Sun et al. [11] proposed a method for detecting
surface defects of steel cables that is based on support vector data
description. This method uses a variety of methods to extract tex-
ture defect features, achieving 93% detection accuracy. Yaman and
Karakose [12] proposed an elevator rope monitoring and detection
method based on image processing and auto correlation which can
effectively distinguish serious rope damages. Wacker and Denzler
[13] proposed a method to reconstruct a three-dimensional SWR
model using two-dimensional wire rope images to identify the
SWR fracture. In summary, the above methods must manually
extract features, which requires a large amount of prior knowledge,
thereby making the feature construction process troublesome.
Thus, the adaptability of these methods is poor. Once the processed
image and application scenario are slightly changed, the detection
performance is reduced [14].

Deep learning provides a solution to the above challenge. Kriz-
hevsky et al. [15] proposed a kind of convolutional neural network
(CNN) that can automatically extract features. In the ILSVR-2010
dataset, the classification accuracy of the CNN is much higher than
that of conventional machine learning methods. The CNN is a neu-
ral network inspired by the visual cortex of animal brains, and its
performance on object recognition is better than that of other neu-
ral networks. Soukup and Huber [16] applied the CNN to steel sur-
face defect detection and improved the network recognition
performance using a normalized method. Liu et al. [17] combined
a sparse auto encoder and a deep belief network to form a deep
neural network that can classify various cable faults without
requiring preprocessing operations for the fault signals. Deng
et al. [18] presented an approach of incipient cable failure recogni-
tion and classification, based on variational mode decomposition
and CNN. Experiments on different classifiers, which include the
decision tree, k-nearest neighbor (kNN), backpropagation neural
network (BPNN) and support vector machine (SVM), show that
the CNN outperforms the other classifiers in terms of accuracy.
Zhou et al. [19] proposed a CNN-based health monitoring method
to balance tail ropes in hoisting systems. This method focuses on
some obvious defects, such as disproportional spacing, twisted
rope, broken strand, and broken rope. In engineering practice,
incipient damage detection is more meaningful for health manage-
ment. In the above literature review, we have found some studies
on the health monitoring of ropes and cables. However, we have
found rare publications that adopt the computer vision detection
method based on deep learning for SWR detection. This under-
standing is further confirmed by a very recent review paper [20],
published in 2019. The SWR has unique characteristics (e.g. com-
plex texture), which present new challenges for detection. The
existing methods that are proposed for ropes and cables cannot
be applied directly to other objects, and their effectiveness cannot
be guaranteed for damage detection of SWRs.

In this paper, we propose a method to detect SWR defects that is
based on computer vision. The proposed method has the character-
istics of being insensitive to noise and background light changes. It
is an end-to-end learning process, which is a type of deep learning
process in which all parameters are trained jointly, rather than step
by step. In this paper, the two ‘‘ends” refer to the raw SWR image
and the category of SWR surface damage, respectively. The pro-
posed method does not require the design of structural features
and has good adaptability for SWR damage detection. In addition,
it can be applied to damage detection for SWRs of different sizes.
The experimental results show that the performance of our
method is better than that of another four conventional machine
learning methods that are based on manual feature extraction.

Contributions of this paper can be summarized as follows.

(1) We explore the use of deep learning theory in SWR damage
detection. The proposed method can automatically extract
discriminant features from optical images of SWR, and it
can provide an end-to-end detection solution.

(2) We design a prototype of the data acquisition apparatus for
computer vision- based detection. The apparatus can cap-
ture high-quality images of the whole SWR from 360
degrees. The apparatus uses a global shutter to reduce the
smear phenomenon and uses guide sleeve structure to stabi-
lize the SWR during inspection. In addition, the slide equip-
ment makes the apparatus adaptive to SWR of different
sizes.

(3) We create two surface damage types, broken wire and wear,
in the laboratory, and by using the data acquisition appara-
tus, we establish a data set of the SWR images for the two
damage types. The experimental results from this data set
show that the proposed method has superiority over the
four conventional machine learning methods.

This paper is organized as follows: Section 1 is the background
and introduction. Section 2 is the introduction of the CNN funda-
mentals. Section 3 introduces the proposed method. Section 4 is
the experimental study and result analysis. Section 5 discusses
the proposed CNN structure and the data acquisition apparatus.
Section 6 concludes the paper.
2. The CNN fundamentals

The CNN is a multi-level neural network structure consisting
mainly of convolutional layers, pooling layers and fully connected
layers. Different activation functions, such as rectified linear units
(ReLU) and sigmoid functions, can be used for different layers. The
CNN may use dropout and normalization to avoid the over-fitting
problem [23], which usually shows a good recognition result in
the training set and performs poorly in the test set.

(1) The convolutional layer

The learning task of the convolutional layer for images is mainly
realized by the convolution kernel. By controlling the size and step
size of the convolution kernel, the transformation of input to out-
put can be adjusted. Convolution kernel parameters and bias val-
ues in convolutional networks are usually obtained by random
initialization. During the training process, these convolution kernel
parameters and bias values are updated by backpropagation. The
step size, a hyperparameter that can be set, defines how many pix-
els at a time are slipped on the convolution kernel in the input
image. Setting a smaller step size leads to a larger receptive field,
which can retain the feature information of many input images.
However, this results in a larger output size and increases the com-
putation cost. Fig. 1 shows the process of slip in the convolutional
layer. The red square is the sliding window, and the orange square
represents the position of the input where the previous sliding
window stayed. The data swept through the sliding window is con-
voluted with the convolution kernel. After the convolution compu-
tation, the corresponding data, along with the bias, is transferred as
the output. For demonstration, the bias value is set to zero. The
convolution operation refers to the multiplication and addition of
the input data in the range of the sliding window and the corre-



Fig. 1. Process of slip in the convolutional layer.
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sponding elements in the convolution kernel. The weight data of
the convolution kernel and the bias are learned by CNN training
algorithms.

(2) The pooling layer

The pooling layer is used to reduce the size of the input image
by down sampling. There are usually two ways to do pooling:
mean-pooling and max-pooling. For a sliding window on an image,
the max-pooling takes the maximum value of the sliding window.
The mean-pooling return the mean value of all elements in the
sliding window. As shown in Fig. 2, the data is pooled using a
2 � 2 sliding window. By consecutively selecting the maximum
value in the 2 � 2 slip window, it can generate the pooling result.
Scherer et al. [22] proved that it is better to process images by the
max-pooling strategy than by the mean-pooling strategy. There-
fore, all pooling layers in this paper are processed by the max-
pooling strategy. The red and orange squares in Fig. 2 are similar
to the squares described in the convolutional layer. The maximum
value in each sliding window is an output element, and the maxi-
mum values of all the sliding windows constitute the output.

(3) The fully connected layer

The fully connected layer is composed mainly of multiple neu-
rons of non-linear activation function, and the layer is used to
weight and combine the local features acquired by the convolu-
tional layer. As both the convolutional layer and the pooling layer
adopt a sliding window strategy, each convolution kernel can only
acquire one local feature of the image. However, for image recog-
nition, there is no way to perform overall classification judgment
by local features. To obtain the overall feature information, the
fully connected layer is required to perform local feature weight
combination. There are many options for the linear activation func-
tion of the fully connected layer. Nair and Hinton [22] confirmed
that the ReLU function has better network performance than other
activation functions, and they showed an approximate probability
explanation. Therefore, each neuron in this paper is activated by
the ReLU function.

When constructing deep neural networks, using more layer
connections and more neuron learning units usually result in bet-
ter learning ability. However, this may also lead to the over-fitting
Fig. 2. Process of pooling in the pooling layer.
problem. Often, the more complex the neural network, the more
serious the over-fitting problem. To solve such a problem, Srivas-
tava et al. [23] introduced dropout into the neural network. Ran-
domly inactivating the neurons in the training process, according
to a certain dropout ratio, can improve the training efficiency
and the generalization ability of the model. Ioffe and Szegedy
[24] also proposed a batch normalization method to accelerate
the speed of deep learning by normalizing all input features. The
method also weakens the influence of parameter updates in the
former layer on the back layer by limiting the mean and variance
of the hidden layer, so that the neural network can reach a deeper
structure. Therefore, the neural network proposed in this paper
also uses dropout and batch normalization to obtain better results.
3. Proposed surface damage detection method

In this paper, SWR surface damage detection is a three-class
classification problem. Given the relative simplicity of the classifi-
cation task, no complex CNN is required in network design. As
such, we use a relatively large number of the convolutional and
the pooling layers, and we use a relatively small number of the
fully connected layers in networks. In the proposed CNN, the con-
volutional layers and the pooling layers are used mainly for feature
extraction, which is automatic and does not need prior expert
knowledge. The fully connected layers use the features to complete
the final classification.

Fig. 3 shows the structure of the proposed CNN, where conv,
pool, and dense represent the convolutional layer, the pooling layer,
and the fully connected layer, respectively. The proposed CNN con-
sists of three pairs of convolutional and pooling layers and two
fully connected layers. The specification of the proposed CNN is
shown in Table 1. The network structure of this paper is based
on [25]. SWR surface damages (e.g. broken wire and wear) are usu-
ally local characteristics, so using smaller convolution kernel and
smaller step size is more helpful to extract local damage informa-
tion and improve classification performance. Therefore, the size of
the convolution kernel in the proposed CNN is 3 � 3, and the stride
is 1. We use the ‘Dropout’ function after the ‘Flatten’ function. The
reason for this can be explained as follows. Hinton et al. [26]
proved that the over-fitting problem can be reduced by using the
‘‘Dropout” function to prevent complex co-adaptations in the train-
ing data. On each presentation of each training set, each hidden
unit is randomly inactivated from the network with a probability
of 0.5 (set the dropout value to 0.5), so a hidden unit cannot rely
on the presence of other hidden units. In this way, we achieve
the maximum randomness. Thus, during the training phase, we
also randomly inactivate 50% of the neurons by setting value of
the ‘Dropout’ to 0.5. Table 2 shows that the proposed CNN attains
a very high accuracy (close to 1), which reaffirms why we do not
need a complex network in this paper.

The CNN can be regarded as a function f(X) = Y that maps the
input X to the output Y. The coefficients of the function are the



Table 1
Specification of the proposed CNN.

Type Size of slipped/step
size or explanation

Input size

Conv1 3 � 3/1 256 � 256 � 3

Batch normalization
Max Pooling 2 � 2/1 254 � 254 � 32
Conv2 3 � 3/1 127 � 127 � 32

Batch normalization
Max Pooling 2 � 2/1 125 � 125 � 128
Conv3 3 � 3/1 62 � 62 � 128

Batch normalization
Max Pooling 2 � 2/1 60 � 60 � 128

Flatten
Linear ReLU 1 � 1 � 128

Dropout
Linear ReLU 1 � 1 � 3
Classifier Softmax 1 � 1 � 1

Fig. 3. Structure scheme of the proposed CNN.
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neural network parameters. The convolutional layer calculation in
CNN is shown in formula (1).

Y ¼ f ðW� Xþ bÞ; ð1Þ
where X is the input feature map and Y is the output feature map.
The output feature map Y of the current layer is the input feature
map of the next layer.W is the convolution kernel, b is the bias vec-
tor, � signifies a convolution operation, and f is the ReLU activation
function.

The data after convolution must be processed by batch normal-
ization before being passed through the pooling layer. The batch
normalization accelerates the learning rate by limiting the distri-
bution of the data. Specifically, the batch normalization operation
is shown in formulas (2)–(5).

lB ¼ 1
m

Xm
i¼1

xi; ð2Þ
Table 2
F1 score and time consumption for the five comparison methods.

kNN SVM Lo

F1 Score 0.94 0.96 0
Time Consumption (second) 9.67 8.96 6
rB
2 ¼ 1

m

Xm
i¼1

ðxi � lBÞ2; ð3Þ

x̂i ¼ xi � lBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rB

2 þ e
p ; ð4Þ

yi ¼ cx̂i þu; ð5Þ
where xi is one element in X , lB is the mean of the input data, rB

2 is
the variance of the input data, x̂i is the result of normalizing the
input data, yi is one element in output data and all results of yi com-
pose Y that are inputted for the next layer calculation. e is a small
constant that prevents rB

2 from being equal to 0. c and u are the
two parameters of the learning model. The pooling layer does not
require learning parameters because it only consists of down sam-
pling. The calculation of pooling layer is intended to take the max-
imum value of the sliding window.

The fully connected layer is calculated as shown in formula (6).

Y ¼ f ðWTXþ bÞ; ð6Þ
whereW is the weight matrix and b is the bias vector, X is the input
data, Y is the output data that are inputted for the next layer calcu-
lation, and f is the ReLU activation function.

In the training phase, the CNN must learn the optimal parame-
ters through weight updates. Formulas (7) and (8) define the pre-
diction value and the loss function, respectively. Minimizing the
loss function makes the prediction value and the true value as close
as possible.

ŷ ¼ f ðWTXþ bÞ; ð7Þ

J ¼ �½ylogŷ þ ð1� yÞlogð1� ŷÞ�; ð8Þ
whereW is the weight matrix and b is the bias vector, X is the input
data, ŷ is the prediction value of the output, y is the true value, f is
the softmax function, and J is the loss function. Parameters are
gistic regression Random forest Proposed method

.94 0.96 0.99

.07 6.10 3.71
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updated by the backpropagation chain rule based on the gradient
descent.

In general, the deep learning optimization strategy uses the
stochastic gradient descent (SGD) method. However, the SGD pre-
sents problems, such as slow convergence rate and poor conver-
gence effect. Duchi et al. [27] proposed the Adagrad algorithm to
accelerate the learning process. Adagrad improves performance
on sparse gradients by preserving the learning rate for each param-
eter. Tieleman and Hinton [28] proposed the RMSProp algorithm,
which adaptively preserves the learning rate, based on the mean
of the nearest magnitude of the weight gradient for each parame-
ter. This means that the algorithm has excellent performance on
non-steady state problems. Kingma and Ba [29] proposed the
Adam algorithm, which combines the advantages of the Adagrad
algorithm and the RMSProp algorithm and performs better in the
CNN than other algorithms. The Adam algorithm specific parame-
ter update is shown in formulas (9)–(13).

Vdw ¼ b1Vdw þ ð1� b1Þ
@J
@w

; ð9Þ

Vdw
corrected ¼ Vdw

1� b1
t ; ð10Þ

Sdw ¼ b2Sdw þ ð1� b2Þ
@J
@w

� �2

; ð11Þ

Sdw
corrected ¼ Sdw

1� b2
t ; ð12Þ

w ¼ w� a
Vdw

correctedffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sdw

corrected þ e
q ; ð13Þ

where w is one element in W, Vdw is the momentum variable, Sdw is
the exponentially weighted moving average variable, and the initial
values of both variables are set to zero. Vdw

corrected and Sdw
corrected are

the corresponding deviation corrections. b1 and b2, two hyperpa-
rameters, are set to 0.9 and 0.999, respectively. These two values
are recommended by Kingma and Ba [29]. e is a small constant that
prevents the denominator from being 0, t is the number of time
steps, and a is the learning rate. The formulas (9)–(13) are used
to update the matrix W of an n-layer neural network. The proce-
dures to update the other parameters (i.e. b, c, u) are similar.

Using the learning rate decay strategy based on the Adam algo-
rithm can, to some extent, improve the performance of the model
[30]. Learning rate decay means that the learning rate is reduced in
proportion to each new training batch. Specifically, the learning
rate decay used in this paper is shown in formula.

ae þ 1 ¼ ae

ð1þ rÞ ; ð14Þ

where ae represents the learning rate of the current iteration, ae+1
represents learning rate of the next iteration, the initial learning
rate is set to 0.01, and r is set to 0.0005.

Through the formulas (7)–(14), the parameters are continu-
ously iterated and updated, so that ŷ and y are gradually
approached, and finally, a model with the best classification perfor-
mance is trained.

Based on the above proposed CNN, the proposed SWR surface
damage detection method is illustrated in Fig. 4, where Nepoch is
set to 20. The proposed method consists of the training phase
and the testing phase. The training phase is used to train the
CNN model. Once the CNN is established, a new image is fed into
the trained network, and it can be classified as one of the three
classes.
4. Experimental study

4.1. Experiment setup and data acquisition

As shown in Fig. 5(a), the data acquisition apparatus mainly
comprises three parts: an optical camera, a light source, and a com-
puter. The optical camera is a CMOS industrial fixed-focus camera,
model of HT-SUA31GC, and the acquired image type is grayscale. A
slide rail is arranged under the optical camera to adjust the phys-
ical distance between the camera and the SWR, which ensures that
the camera can be adapted to SWR with different diameters. The
light source uses a monochromatic strip light source with a diffuse
plate. The light source and the camera are symmetrically dis-
tributed at an angle of 60 degrees. The symmetrical strip light
source ensures that, when capturing images, the metal surface
reflection is minimized. The computer is used to record and save
all captured images during the process of inspection. The power
supply is used to power the two 5-Watt light sources. A 10 cm
guide sleeve is attached to the holder to prevent the blurring image
problem during the movement of the SWR. As shown in Fig. 5(b),
this design can effectively reduce the shaking of SWR and can
improve the quality of the SWR image.

The flow chart of the data acquisition processes is illustrated in
Fig. 6. The five steps can be described as follows: 1) put the SWR
into the holder; 2) connect the camera to the computer; 3) open
the data acquisition software in the computer, and prepare for data
acquisition by setting specifications, such as time of exposure and
brightness; 4) energize the light source; and 5) drag the SWR
through the data acquisition apparatus for data acquisition.

The SWR used in our experiment has a diameter of 28 mm, a
specification of 7 � 19, and a steel type of 304. Surface damages
on this SWR are created by a grinding wheel. The damages differ
in depth and width, and they are used to simulate real damages.
The data acquisition apparatus moves along the SWR in the axial
direction. For the wear damage, we created 38 damage cases with
different depths, from 0.7 mm to 3 mm. For the broken wire dam-
age, we created 57 damage cases with different numbers of broken
wires, from 2 to 5. To collect more abnormal samples, we drag the
SWR to perform data acquisition twice. Each time, there are
changes of the position of the SWR relative to the camera for each
time, making the captured images different. We collect 2757
images in total:1036 images are from the normal SWR, 699 images
are from the worn SWR, and 1022 images are from the SWR with
broken wires. The resolution of the images is 240 � 320 pixels.
To prevent the data imbalance problem that may occur during
the training process, we randomly select 660 images from every
category to establish the training data set, and uniformly scale
the images to 256 � 256 pixels. Fig. 7 gives examples of the cap-
tured images.

To improve the generalization ability of the model, we use the
function called ‘‘ImageDataGenerator” in Keras deep learning
framework to realize data enhancement. Data enhancement can
make the data set as diverse as possible and may thus prevent
the over-fitting problem from occurring in the proposed network.
We can use data enhancement to expand the training set. Fig. 8
shows an example of the data enhancement results. In particular,
the image used for training and testing is one of the following vari-
eties: the original image, the image after being randomly rotated
within 30 degrees of the original image, or the image after being
offset to the left/right within 10% of the original image. We ran-
domly select 660 images from each of the three categories for
training and testing. From the 660 images, we select 360 images
for training and use the rest for testing. We repeat the above steps
ten times and record the testing results each time. Finally, we com-
pute the average of the testing results for each of the ten times as
the final results.
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4.2. Evaluation metric

The surface damage detection performance is evaluated by F1
score, which considers both precision and recall. The precision
refers to the ratio of certain category individuals to total selected
population. The recall refers to the ratio of certain selected cate-
gory individuals to the total individuals in this category. Their def-
initions are shown in formulas (15)–(17). F1 score combines the
precision and the recall to objectively reflect the generalization
performance of classification methods.
Precision ¼ TP
TP þ FP

; ð15Þ
Recall ¼ TP
TP þ FN

; ð16Þ
F1 score ¼ 2� Precision� Recall
Precision þ Recall

; ð17Þ

where TP denotes the number of cases in which the detection is
positive and the actual value is also positive, FP denotes the number
of cases in which the detection is positive but the actual value is
negative, FN denotes the number of cases in which the detection
is negative but the actual value is positive, and TN denotes the num-
ber of cases in which the detection is negative and the actual value
is also negative.

4.3. Detection performance comparison

In this section, we compare performance between the proposed
method, which is capable of automatic feature extraction, and the
conventional machine learning method, which require manual fea-
ture extraction. In this paper, four conventional machine learning
methods, kNN [31], SVM [32], logistic regression [33], and random
forest [34], are used for the comparison. For conventional machine
learning, image features must be extracted prior to the model
training and testing. Platzer et al. [8] found that the structural
characteristics of the SWR generate some obvious gradient direc-
tions in the image. He also compared various feature extraction
methods and found that the histogram of oriented gradient
(HOG) feature is the best. Therefore, this paper uses the HOG fea-
ture as the input for the conventional machine learning methods.
The HOG feature extraction uses a detection window unit size of



Fig. 9. F1 scores of the CNNs with different structures.
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20 � 20 pixels, and the number of discrete orientation bins is set to
four.

The four conventional machine learning methods are imple-
mented by the Scikit-Learn Machine Learning Toolbox [35], where
hyperparameter optimization is also available for the four meth-
ods. F1 scores and time consumption of the four methods and
the proposed method are shown in Table 2. We first analyze the
F1 score results. The experimental results show that the proposed
method performs better, in terms of F1 score, than the four con-
ventional machine learning methods. Moreover, even though the
proposed method uses a simple network architecture, its F1 score
attains the highest value of 0.99. This reflects that the CNN has a
strong ability for feature extraction, and the automatically
extracted features implemented by the CNN performs better than
the manually extracted features developed by the field experts,
such as the HOG features. We next analyze the time consumption
results. Time consumption refers to prediction time for the test
data set, and is collected by a computer with an i5-8500 CPU and
GTX 1060-5G GPU. It can be seen from Table 2 that the four con-
ventional machine learning methods take more time than the pro-
posed method. There are two reasons for this: 1) the conventional
machine learning methods have no way to use GPU for algorithm
acceleration; and 2) the conventional machine learning methods
take a lot of time to convert input images to HOG features. In our
experiment, converting the input images to HOG features takes
5.74 s.
5. Discussions

5.1. Discussion on the proposed CNN structure

This section explores the performance of the CNN with different
structures. We conduct a set of experiments that use different
numbers of layers in the CNN. First, a CNN baseline structure
named CNN0 is designed, and its network structure is shown in
Table 3. The F1 score of the CNN0 is 0.969 and this score is consid-
ered to be a baseline performance. It is worth noting that, accord-
ing to Table 2, even the structure of the CNN0 is simple, the CNN0
outperforms the three conventional machine learning methods,
which are kNN, SVM, logistic regression, and random forest.

Based on the CNN0, five networks are generated by consecu-
tively increasing the number of the fully connected layers with
128 neurons with the ReLU activation function. And the F1 scores
of the five networks are calculated. Similarly, another five net-
works are also generated continuously by increasing the number
of combinations of the convolutional and the pooling layers to
the CNN0. Each combination sets the convolution kernel size to
3 � 3, the step size to 1, the number of the convolution kernels
to 128, and the pooling layer size to 2 � 2. Then, the F1 scores of
these five networks are also calculated.

The F1 scores of the above two groups, of the networks and the
CNN0, are shown in Fig. 9. According to the figure, although the F1
Table 3
Specifications of the CNN0.

Type Size of slipped/step size or explanation input size

Conv1 3 � 3/1 256 � 256 � 3

Batch normalization
Max Pooling 2 � 2/1 254 � 254 � 32

Flatten
Linear ReLU 1 � 1 � 128

Dropout
Linear ReLU 1 � 1 � 3
Classifier Softmax 1 � 1 � 1
score first increases and subsequently decreases when we contin-
uously add the combination of convolutional and pooling layers
to the CNN0, the performance is still improved, relative to CNN0.
By contrast, as the number of the fully connected layers increases,
the performance drops sharply.

The main function of the fully connected layers is to combine
local feature information with global feature information. Thus, it
is not necessary to increase the number of fully connected layers.
If too many layers are added to the network, it is easy to cause
the over-fitting problem. The main function of the convolutional
and pooling layers is to extract local surface damage features,
and by increasing the depth of the convolutional and pooling lay-
ers, allow extraction of high-level features, thereby facilitating net-
work learning and classification. However, when the convolutional
layer and the pooling layer reach a certain depth, a further increase
of the layers causes no effect on the classification performance. In
addition, increasing network depth increases the computational
cost, so continuing to increase the depth of the convolutional and
the pooling layers after achieving a satisfactory performance is
not recommended.

We use different sizes of the training data to explore whether
the model is robust. Fig. 10 gives the testing results about the F1
score. In the x-axis of the figure, 60 denotes that we choose 60
images for training and 600 images for testing from each category;
120 means that we select 120 images for training and 540 images
for testing from each category, and so on. We repeat the above data
selection processes ten times, and we compute the average of the
ten testing F1 scores as the final result. According to Fig. 10, F1
scores basically stabilize around 0.99 when the training size
reaches 360. In the cases with small training data sizes, the pro-
posed method can still maintain a good detection performance.

To compare the effects of different feature extraction methods,
we use the t-SNE method [36] to reduce the feature dimensions.
The t-SNE method is a nonlinear dimensionality reduction method,
which is very suitable for high-dimensional data visualization. The
t-SNE method converts affinities of data points to probabilities. The
affinities in the original space are represented by Gaussian joint
probabilities and the affinities in the embedded space are repre-
sented by Student’s t-distributions [35]. When the Kullback-
Leibler divergence between the distributions of high-dimensional
data and low-dimensional data is minimized, which means that
the data points of the high-dimensional distribution have been
successfully mapped onto the low-dimensional space. When using
conventional machine learning methods, we extract the HOG fea-
tures of the images. Before entering the classifier for classification,
the dimension of extracted features is 3600. When using a deep
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Fig. 11. Group scatter plots of different feature extraction methods: (a) the HOG features, (b) the proposed method, (c) CNN0, and (d) the network that adds 5 layers to the
fully connected layer in Fig. 9.
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learning method for feature extraction, before entering the classi-
fier for classification, the extracted feature dimension is 128. We
use the t-SNE method to reduce features into two-dimensional
space for representation. Fig. 11 shows group scatter plots of the
features for the 900 testing samples. The HOG features show high
nonlinear characteristics in Fig. 11(a), which leads to a big chal-
lenge for the classification. This again confirms the limitations of
manual feature extraction methods. According to Fig. 11(b), the
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features extracted from the proposed method are highly discrimi-
nant for the three classes, and a simple classifier can deal with this
three-class classification problem because the boundary is clear.
The proposed method performs slightly better than the compar-
ison methods from Table 2; however, the features extracted by
the proposed method perform much better than those extracted
by the comparison methods from Fig. 11. This again explains the
success of our method for SWR surface damage detection. Accord-
ing to Fig. 11(c), the decision boundary blurs, and this issue
becomes even worse in Fig. 11(d). It shows that the proposed
structure is well tuned.

The above comparison suggests that, in the future, when
designing the CNN for surface damage detection of SWR, the depth
of the convolutional and pooling layers should be preferentially
increased, which help improve the classification performance. Fur-
ther, the depth of the fully connected layer should be properly
selected to prevent the over-fitting problem.

5.2. Discussion on the data acquisition apparatus

The main factors that influence the quality of SWR images are:
1) shaking during the moving of SWR, 2) the image smear phe-
nomenon, and 3) the photo missing problem for the SWR with rel-
atively high moving speed.

As for the problem of shaking during movement of the SWR, we
were able to design the piece of equipment that functions like a
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As the SWR is moving while capturing images, the image smear
problem may occur, which negatively influences detection. To
avoid incurring a smear in the process of data acquisition, we use
the camera with a global shutter function for data acquisition. Glo-
bal shutter and rolling shutter are two camera exposure modes.
The rolling shutter uses a progressive scanning method for expo-
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the difference between the two exposure methods. As the rolling
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image smear occurs when shooting the moving object. But the glo-
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collects about 45 images per second when we drag the holder at
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If the SWR moves at a relatively high speed, it is possible to fail
to capture all images of the SWR defects. This problem is called the
‘‘the photo missing problem” in this paper. By increasing the data
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difference between the two exposure modes. For the non-
overlapped exposure mode, the exposure and readout processes
are completed during each image acquisition cycle. For the over-
lapped exposure mode, the image data obtained in the previous
frame can be read and transmitted when the next frame of image
begins to be exposed. We use the non-overlapped exposure mode
when we are collecting image data. The camera’s exposure time is
5 ms and readout time is about 17 ms (45 frame per second). Dur-
ing the readout process, the SWR is about 0.26 cm forward, and the
camera’s shooting area is greater than 0.28 cm2. We do this to
enable us to guarantee that every defect of the SWR is captured.

In practical engineering applications, the SWR surface inspec-
tion may require a faster running speed. One can use a camera that
supports the overlapped exposure mode. It is also possible to
shorten the exposure time by increasing the light intensity, or
use a higher frame rate camera to reduce the time required for
the readout process. In summary, we propose reference solutions
to alleviate the influence of the three factors on the quality of
the SWR image. The quality of the SWR image can also be
improved, to some extent, by these solutions.
6. Conclusions

In this paper, we propose a CNN-based method for SWR surface
damage detection. We design a data acquisition apparatus to col-
lect a set of images from normal and damaged SWRs. Unlike con-
ventional machine learning methods, the proposed method can
automatically obtain the discriminant features from the convolu-
tional and the pooling layers. It overcomes the intrinsic limitations
of the manual feature extraction methods. The experimental
results show that the proposed method achieves a higher F1 score,
of 0.99, than those obtained from the four conventional machine
learning methods. In addition, the time consumed by the proposed
method is the shortest.

The shortcoming of the proposed method is that the effective-
ness of the method has been verified only in the laboratory sce-
nario. Limited by the condition of the laboratory, only two
different types of SWR surface defects are investigated, which does
not mean that the proposed method can only deal with the two
surface defects. The deep learning method has strong generaliza-
tion and transfer learning capabilities. The proposed method can
also deal with other SWR defects, provided that the associated
training data set is available for such SWR defects. Moreover, in
practical applications, defects not only appear on the surface, but
also inside the SWR. The proposed method only focuses on detect-
ing surface damages, and cannot be used to detect inner damages.
SWR inner damage detection is a very challenging problem. To use
the proposed method to achieve SWR inner damage detection, it is
necessary to combine other imaging techniques, such as magnetic
flux leakage, ultrasound guided wave, and acoustic emission.
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